An efficient parametric modeling and path planning method for 3D printing of curved surface corrugated sandwich structures

Published in Graphical Models, 2025

This study proposes an efficient preprocessing method and parametric modeling technique for the path planning of corrugated curved surface sandwich structures. Focusing on the characteristics of Fused Deposition Modeling (FDM), the model undergoes preprocessing for two types of path planning, segmenting the sandwich structure for Eulerian Path Printing (EPP) and Eulerian Circuit Printing (ECP). Algorithms were developed using the SolidWorks API for secondary development, resulting in a standalone plugin module. This plugin streamlines adaptive modeling of corrugated sandwich structures on curved surfaces, showcasing strong versatility. Additionally, a comparison of the printing time between preprocessed models and standard models reveals a significant reduction in nozzle idle time. Moreover, as the infill density increases, the reduction in printing time becomes more pronounced. Finally, compression tests confirmed that printed parts obtained using the EPP and ECP methods maintained comparable mechanical properties to those printed using conventional methods.